

STRUCTURAL ENGINEERS

Conceptual Retrofit Design based on ASCE 41-17 Tier 1 and 2 Seismic Evaluation

Kensington Public Safety Building 217 Arlington Avenue Kensington, CA 94707

Prepared for: Ross Drulis Cusenbery Architecture, Inc. IDA Project Number 16066 September 5, 2019

1 Introduction

IDA Structural Engineers (IDA) has performed a seismic evaluation of the Kensington Public Safety Building, located at 215 Arlington Avenue, California, using an ASCE-41-17, Tier 2 seismic evaluation procedure. ASCE 41-17, titled *"Seismic Evaluation and Retrofit of Existing Buildings,"* published by the American Society of Civil Engineers (ASCE) in 2017, is the industry standard procedure for the seismic evaluation and retrofit of existing buildings.

The primary intent of the Tier 1 screening and Tier 2 deficiency based procedure is to evaluate and where warranted, reduce seismic risk efficiently where possible and appropriate by using simplified procedures targeted to a specific building type.

The information below forms the foundation for the evaluation. This information is either derived from owner requirements, such as risk category and desired structural performance level, or is site specific, such as seismic hazard level.

Building	Kensington Public Safety Building
Address	215 Arlington Ave, Kensington, CA
Latitude and Longitude	37.906234, -122.278724
Risk Category	IV, buildings and other structures
	designated as essential facilities
Basic Performance Objective for Existing	BSE-1E
Buildings (BPOE)	Immediate Occupancy Structural
	Performance (S-1)
	Position Retention Nonstructural
	Performance (1-B)
	BSE-2E
	Life Safety Structural Performance (S-3)
	Hazards Reduced Nonstructural
	Performance (3-D)
Seismic Hazard Level	BSE-1E
	20% in 50 years, 225 year return period
	BSE-2E
	5% in 50 years, 975 year return period
Level of Seismicity	High
Soil Type	NEHRP C
Site Class	С
Building Type	Wood framed building, sheathed with
	wood structural shear panels.

2 Performance Objective

The performance objective consists of one or more pairings of a selected Seismic Hazard Level with a target Structural Performance Level and Nonstructural Performance Level.

The Basic Performance Objective for Existing Buildings (BPOE) is a specific, seismic Performance Objective (from several available choices) and is dependent on the Risk Category of the building and the desired seismic performance expected by the owner. The BPOE for existing buildings is a slightly lower category which may result in a lower level of safety and a higher probability of collapse than what may be provided by building codes for new buildings. Buildings meeting the BPOE are expected to incur very little damage from relatively frequent, small to moderate earthquakes but are expected to incur greater levels of damage and economic loss from severe earthquakes. The level of damage and potential economic loss for buildings rehabilitated to the BPOE likely will be greater than expected for the Basic Performance Objective for New Buildings (BPON).

Accepting a seismic performance objective (BPOE) which could be less than "new code" (BPON) allows that relatively new existing buildings are not evaluated as deficient when updated and more conservative codes are adopted over time.

The increase in seismic risk is tempered by the recognition that existing buildings often have a shorter remaining useful lifespan than new buildings. That is, if the traditional code based demand for new buildings presumes a 50 year life, then an existing building with a 30 year remaining lifespan has a lower probability of experiencing a code level (or major) earthquake over its remaining lifespan. The standard also recognizes that the cost of achieving smaller probability of damage caused by the higher level of performance is often disproportionate to the incremental cost.

For this Risk Category IV building, it is required to evaluate the building for the BSE-1E for Immediate Occupancy Structural Performance and Life Safety Structural Performance for the BSE-2E. The Nonstructural Performance Level is 1-B for the BSE-1E and 3-D for the BSE-2E in the BPOE, which provides most of the protection obtained under the Operational Building Performance Level without the added cost of providing standby utilities and performing rigorous seismic qualification of building equipment performance.

2.1.1 Structural Performance Level for BPOE

The structural performance level for BPOE is S-1 (Immediate Occupancy) performance for the BSE-1E, which provides for of the building following a 20% in 50 year earthquake and and S-3 (Life Safety) for the BSE-2E performance following a 10% in 50 year earthquake meeting the criteria discussed under the seismic hazards section.

A structure conforming to the Immediate Occupancy seismic performance level should be expected to have a very limited damage state following the anticipated seismic event. The basic lateral and vertical force resisting systems of the building should retain almost all of their pre-earthquake strength and stiffness. The risk of life-threatening injury (life safety) as a result of structural damage is very low. Although minor structural repairs might be anticipated, repairs would generally not be required before re-occupancy.

2.1.2 Nonstructural Performance Level for BPOE

An evaluation of non-structural elements and systems were not included as part of the scope of this evaluation.

2.1.3 Seismic Hazard Level for BPOE

The Basic Safety Earthquake for BPOE is 1E, which requires ground motions with a 20% probability of exceedance in 50 years (or a 225 year recurrence interval) for Immediate Occupancy and 2E, which requires ground motions with a 5% exceedance in 50 years (or a 975 year recurrence interval). A higher recurrence interval represents a larger earthquake with a statistically rarer occurrence. For reference ASCE 7-10 uses a design procedure based on 2/3 values of the MCEr earthquake at any site for new design (generally based on 2% probability of exceedance in 50 year period earthquake, with a 2500 year recurrence interval, however, in high seismic near fault regions the probabilistic earthquake is modified to a deterministic calculation by USGS which reduces the ground motions from absolute probabilities). The ASCE 7 procedures along with the seismic ground motions strive to achieve a 10% probability of collapse for MCEr for properly designed buildings.

The commentary in ASCE 41-17 notes that for Risk Category III and IV buildings, the BPOE (basic performance objective for existing buildings) using the BSE-1E earthquake (20% in 50 years, 225 year recurrence) has not traditionally been used and instead, Risk Category III and IV buildings have been evaluated to levels consistent with new building design, using 2/3 of MCEr per ASCE 7-10 procedures. This would produce seismic demands greater than what the BSE-1E earthquake demands would be. Given these facts, it is most likely not financially feasible to pursue a new building equivalent seismic hazard level for this building.

3 Site Description

The Kensington Public Safety Building is located along Arlington Avenue constructed amongst single family residential buildings. The building is constructed on a slope into the uphill side of the hill. The first floor is built into the slope with a retaining wall at the rear of the building. The second floor exits to a parking lot behind the building. There is an additional concrete retaining wall at the rear of the parking lot which supports residential lots above. A sloped driveway along the south side of the building connects the Arlington Avenue to the parking lot in the rear. The building is south of Oberlin Avenue and East of Amherst Avenue.

4 Building Description

The building, constructed in the early 1960's is a two story wood framed structure supported on continuous concrete foundations. The seismic load resisting system appears to be light framed walls sheathed with plywood structural sheathing. The ground floor is constructed into the hillside with a retaining wall at the rear of the building which is approximately the height of the first floor. The top of concrete foundation on the sides slopes from the top of the wall to the bottom of the first floor. The first floor appears to be constructed as a concrete slab-on-grade. The total building area is approximately 5700 square feet. The overall building dimensions are approximately 40 feet by 80 feet with a maximum height of about 45 feet. See Figures 1 to 5 for photos of the

In 1998 a renovation was performed on the building which included a partial seismic retrofit. In this renovation, plywood shear walls were strengthened in the middle of the building at a wall between the apparatus bay and the offices. The front of the building was strengthened with steel moment frames at the entry of the apparatus bay. Drilled piers were also added at the exterior of the building in an attempt to resist sliding of the building downhill.

In 2004 another renovation was performed. In this renovation, some minor framing changes were made at the second floor over the apparatus bay. The shear wall between the apparatus bay and the offices was strengthened again. The beam/column connections at the apparatus bay moment frame were strengthened during this renovation.

5 Geotechnical Information

For this evaluation, two previous geotechnical evaluations were provided. A 1990 geotechnical evaluation by Seidelman Associates, Inc. was performed to evaluate potential fault traces on site. A 1997 geotechnical evaluation by Geomatrix Consultants evaluated potential earthquake-related earthquake hazards such as surface fault rupture and landslide/ slope stabilities. However, these reports do not provide current seismic ground motion data values. Therefore the seismic ground motions used in this evaluation were derived from United States Geological Survey and California Geological Survey maps and fault information. See Appendix C for information used.

These geotechnical reports do not indicate that liquefaction is a consideration at this site.

An updated geotechnical study was performed by Rockridge Geotechnical dated January 31, 2018. The primary purpose of this study was to identify fault traces with a seismic

refraction study to determine the feasibility of constructing a new building beyond the existing footprint of the building. Given the limitations of the seismic refraction study, the Geotechnical Engineer has recommended a 50 foot setback from the suspected fault feature at the eastern property line. This limitation severely limits the ability to extend the building eastward beyond the existing footprint.

6 Site Observation Notes:

A site visit to observe the existing building was performed on July 13, 2016. The building generally appeared to be in good shape. There were no visible observed signs of rot or decay. There were areas of the slab in the garage concrete slab exhibiting signs of slab settlement in the form of cracks. Settling of exterior paving at the rear parking lot and minor cracking at the exterior footings along the driveway side of the building appear to be indicators of settlement on site. It is unclear whether the movement occurred before or after the retrofit measures performed as part of the 1998 renovation.

7 Available Documents

The following drawings were available for review for this evaluation:

- Original architectural, dated March 27, 1969 by Jeffries, Lyons, and Hill Architects.
- Renovation drawings dated September 10, 1998, by Marcy Li Wong Architects.
- Renovation drawings dated September 10, 1998, by The Crosby Group.
- Renovation drawings dated June 21, 2004, by Baseline Engineering.
- Renovation drawings dated June 29, 2004, by Italo A. Calpestri III & Associates, AIA.

8 Code Assessment for Future Renovation

In order to determine extent of potential renovations, research of the code was performed to find guidance on construction of Essential Services Facilities on or near earthquake fault traces. Based on this research we believe that it is acceptable to retrofit and remodel the building up to 50% of its value.

This assessment starts with the California Administrative Code which provides guidance on essential services facilities. Section 4-206 of the California Administrative Code states:

<u>4-206 Approval of new essential services buildings</u>

Plans and specifications shall be submitted to the appropriate enforcement agency for every new owned or leased essential services building before the plans are adopted by the governing board, authority, owner, corporation or other agency proposing to construct any essential services building.

Before any agency may convert an existing building into an essential services building, that agency shall submit plans and specifications for the alteration of the building to the appropriate enforcement agency for approval. The plans shall provide for the alterations necessary for compliance with the requirements of these rules and regulations.

Authority: Health and Safety Code Section 16022.

Reference: Health and Safety Code Section 16011.

From this section, we refer to the Health and Safety Code:

2016 California Code Health and Safety Code - HSC DIVISION 12.5 - BUILDINGS USED BY THE PUBLIC CHAPTER 2 - Essential Services Buildings ARTICLE 3 - General Requirements and Administration Section 16014.

Universal Citation: CA Health & Safety Code § 16014 (2016)

16014. (a) Except as otherwise provided in subdivision (b), drawings and specifications submitted pursuant to this chapter for construction, reconstruction, remodeling, additions, or alterations which affect structural elements of structures in existence on January 1, 1986, shall be based upon an assessment of the geological conditions of the site and the potential for earthquake damage, relying upon geologic and engineering investigations and studies by personnel who are competent to report on geologic conditions and their potential for causing earthquake damage. One-story Type V and Type II N construction of 4,000 square feet or less shall be exempt from this section, unless the project is within a special studies zone established **pursuant to Section 2622** of the Public Resources Code.

(b) The requirements of subdivision (a) may be waived by the enforcement agency if it determines that these requirements for the proposed essential services building project are unnecessary and would not be beneficial to the safety of the public.

This section leads to the Alquist-Priolo Earthquake Zone Act which provides guidance on construction located within an earthquake fault zone. The purpose of this act is to restrict development across fault traces. An excerpt reads:

2621.5. (a) It is the purpose of this chapter to provide for the adoption and administration of zoning laws, ordinances, rules, and regulations by cities and counties in implementation of the general plan that is in effect in any city or county. The Legislature declares that this chapter is intended to provide policies and criteria to assist cities, counties, and state agencies in the exercise of their responsibility to **prohibit the location of developments and structures for human occupancy across the trace of active faults**. Further, it is the intent of this chapter to provide the citizens of the state with increased safety and to minimize the loss of life during and immediately following earthquakes by facilitating seismic retrofitting to strengthen buildings, including historical buildings, against ground shaking.

An exception in section 2621.7 act allows for alterations or additions which do not exceed 50 percent of the value of the structure. Because of this exception we believe that a retrofit or alteration up to 50% value of the structure may be performed without further restrictions of the Alquist-Priolo Act. This exception can also be interpreted to allow for an addition up to 50% of the value of the structure, however the updated Geotechnical Study performed by Rockridge Geotechnical recommends against new construction beyond the existing footprint of the building. The Alquist-Priolo Act also allows for an exception for seismic retrofits of certain types of buildings but the current building does not meet the requirements for any of these building types.

9 Tier 1 Deficiencies

The checklists and calculations for Tier 1 evaluation are located in Appendix A.

9.1 Vertical irregularities

At the front of the building long Line E, assumed shear walls between 4 and 7 and the second floor do not align vertically with the moment frame at the apparatus bay.

9.2 Slope Failure

The 1997 Geotechnical Evaluation by Geomatrix determined that there was risk of slope failure due to a seismic event. The renovation drawings by Crosby Group from September 1998 appear to have partially addressed this risk by the installation of concrete piers in the driveway outside of the apparatus bay between grid lines 1 to 4. It does not appear any mitigation measures were installed between lines 4 to 7 to resist the movement of the building downslope.

9.3 Shear Stress Check

There is insufficient information on the drawings to determine the extent of plywood shear wall nailing in areas of the building not documented in the 1998

and 2004 renovations. For this analysis we have assumed the presence of nominally nailed plywood around the exterior of the building. This analysis combined the assumed strength of these walls with the addition of the new shear walls documented in the renovation drawings. The shear stresses in the walls exceed the allowable in the Tier 1 checks in several locations.

9.4 Diaphragm Continuity

The diaphragm at the second floor has a split level and does not meet the Tier 1 check for diaphragm continuity.

9.5 Steel Moment Frames with Flexible Diaphragms: Drift

The Tier 1 check evaluates the drift ratio of the steel moment frame using the Quick Check procedure. The steel moment frame at the apparatus bay installed as part of the 1998 Renovation does not satisfy the Tier 1 quick check for drift.

9.6 Steel Moment Frames with Flexible Diaphragms: Flexural Stress

The Tier 1 check evaluates the average flexural stress in the moment frame columns and beams. The steel moment frame beams and columns do not satisfy the Tier 1 quick check for flexural stress.

9.7 Steel Moment Frames with Flexible Diaphragms: Transfer to Steel Frames Connections

This Tier 1 check evaluates the capacity of the diaphragm connections to transfer loads to the moment frame.

9.8 Steel Moment Frames with Flexible Diaphragms: Steel Column Connections

This Tier 1 check evaluates the ability of the column anchor connection to resist the foundation.

10 Tier 2 Analysis

10.1 Vertical irregularities

A Tier 2 evaluation finds that the collector connections are adequate. The shear wall capacities and moment frame capacities at this line are evaluated further under shear stress checks and moment frame checks.

10.2 Shear Stress Check

Tier 2 evaluation of the shear walls finds that the shear stress checks are not compliant. The shear stresses in some walls exceed the assumed capacity of the walls. The wall lines which require strengthening are identified in the mitigation plan.

10.3 Diaphragm Continuity

The diaphragm at the second floor has a split level and therefore does not meet the Tier 1 check.

10.4 Moment Frame Drift and Beam Strength

The moment frames were not compliant for the expected strength of moment frame beams and drift limits.

11 Mitigation

See Appendix A for schematic mitigation plan. Below is a description of the different mitigation items.

11.1 Vertical Irregularity

Strengthen diaphragm with plywood diaphragm nailing.

11.2 Slope Failure

Obvious signs of slope failure and movement downhill of the building were not observed during the site visit. A monitoring program is recommended to track potential movement of the building over time. Because drilled piers were installed between grid lines 1 and 4, particular attention should be paid to the section between grid lines 4 and 7. If a monitoring program identifies that building is moving downslope, it is recommended to add drilled piers parallel to line E between lines 4 and 7 to mitigate further movement of the building.

11.3 Shear Stress in Wood Shear Walls

Add plywood shear walls and holdowns or increase nailing at existing shear walls and replace holdowns as required.

11.4 Holdown and Posts to Foundation

Add holdown and posts to end of shear to upper level shear wall to address discontinuity of shear wall tension and compression forces.

11.5 Install Additional Anchor Bolts

Install additional anchor bolts to strengthen connection of moment frame to foundation.

11.6 Strengthen Moment Frame Beams

Strengthen moment frame beams by adding steel to build up beam section. This will also reduce drift. Column strengthening may also be required to address drift exceedance. Another option is to install a new pre-fabricated moment frame similar to a Simpson Strong-Frame within the existing moment frames. The advantage of a Strong-Frame is the replaceable fuse which can be replaced if ductile yielding occurs.

12 Conclusions

The purpose of this study is to identify the deficiencies of the existing building and determine the feasibility of renovation or addition to the existing building.

It is our opinion that it is acceptable to retrofit and remodel the building up to 50% of its value. It is not allowed to construct a new public safety building or new structure across a fault, nor is it allowed to increase its occupancy. Per the geotechnical recommendations, new construction is not allowed within a 50 foot setback of the suspected fault feature along the eastern property line. This severely limits potential new construction on the eastern portion of the building.

Thank you for the opportunity to be of service. Please call with any questions.

IDA Structural Engineers, Inc.

Jason M. Lee, SE Associate

KENSINGTON PUBLIC SAFETY BUILDING ASCE 41 Seismic Evaluation

Figure 1: Aerial View

Figure 2: View from the North

Figure 3: View from the South

Figure 4: View from the West

Figure 5: View from the East

APPENDIX A : SCHEMATIC MITIGATION PLAN

APPENDIX B : TIER 1 CHECKLISTS

APPENDIX C SUMMARY DATA SHEET

Building Name. Nensington	Public Safety Buildin	ng		Date:	9/5/19	
Building Address: Kensington	Public Safety Buildin	ng				
Latitude: <u>37.906233</u>	Longitud	e: <u>-122.</u>	278758	Ву:	JML	
Year Built: 1969	Year(s) Remodele	d: 1998, 2004	Original Design	Code:		
Area [ft² (m²)]: 5800	Length [ft (m))]: 79' 2"	Width	[ft (m)]:	40	' 8 "
No. of Stories: 2	Story Heigh	nt:+/- 11	' <mark>3</mark> " Total	Height:	22	6"
USE 🗌 Industrial 🗌 Office	Warehouse Hosp	ital 🗌 Residential	Educational	X Other:	Essential ser	vices facility
CONSTRUCTION DATA						
Gravity Load Structural System:	Light framed w	ood bearing wall	3			
Exterior Transverse Walls:			Opening	IS?		
Exterior Longitudinal Walls:			Opening	IS?		
Roof Materials/Framing:	Built up Roofing ov	ver 1/2" PW span	ning between 2x	8 joists	@ 16"oc	
Intermediate Floors/Framing:	3/4" PW over eithe	er 2x10 or 2x14 fl	oor joists @ 16"	oc		
Ground Floor:	Reinforced concret	e slab, 7" thick in	apparatus bay,	4" thick	in remaining	areas
Columns:	Wood and steel co	lumns	Foundatio	on: Cor	ntinuous reinf	orced
General Condition of Structure:	Well maintained			con	crete footing	, six concrete
Levels Below Grade?	Ground floor is part	ially embedded i	n slope	drill	ed pier	
Special Features and Comments:	Building is built into	o a slope. Parkir	g at rear is eleva	ation of (upper floor.	
	147 1 1 1	1				
Vertical Elements: Diaphragms: Connections:	Wood shear wall Plywood/Flexible	s and moment fra	ame			
Vertical Elements: Diaphragms: Connections:	Wood shear wall Plywood/Flexible	s and moment fra	ame			
Vertical Elements: Diaphragms: Connections: EVALUATION DATA BSE-1N Spectral Res Acceler	Wood shear wall Plywood/Flexible sponse ations:	s and moment fra	ame			
Vertical Elements: Diaphragms: Connections: EVALUATION DATA BSE-1N Spectral Res Acceler Soil F.	Wood shear wall Plywood/Flexible sponse rations: Spos = actors: Class =	s and moment fra	S _{D1} =	1.2	F _r = 1	5
Vertical Elements: Diaphragms: Connections: EVALUATION DATA BSE-1N Spectral Res Acceler Soil F. BSE- <u>1E</u> Spectral Res Acceler	Wood shear wall Plywood/Flexible sponse rations: $S_{DS} = _$ actors: Class = _ sponse $S_{XS} = _$	s and moment fra	S _{D1} = F _a = S _{X1} =	1.2 0.491	F _i =1	.5
Vertical Elements: Diaphragms: Connections: EVALUATION DATA BSE-1N Spectral Res Acceler Soil F. BSE- <u>1E</u> Spectral Res Acceler Level of Seis	Wood shear wall Plywood/Flexible sponse $S_{DS} = -$ factors: Class = - sponse $S_{XS} = -$ actors: Class = - sponse $S_{XS} = -$ actions: $S_{XS} = -$ actions: $S_{XS} = -$ actions: $S_{XS} = -$	s and moment fra	$S_{D1} = $ $S_{Z1} = $ $S_{X1} = $ Performance Level:	1.2 0.491 Imme	F _v =1	
Vertical Elements: Diaphragms: Connections: EVALUATION DATA BSE-1N Spectral Res Acceler Soil F. BSE- <u>1E</u> Spectral Res Acceler Level of Seis Building F	Wood shear wall Plywood/Flexible sponse $S_{DS} = _$ actors: Class = _ sponse $S_{xs} = _$ ations: $S_{xs} = _$ sponse $S_{xs} = _$ ations: $T = 0$	s and moment fra	$S_{D1} = \\ S_{D1} = \\ F_a = \\ S_{X1} = \\ Performance Level:$	1.2 0.491 Imme	<i>F_v</i> =1 diate Occupa	.5 INCY
Vertical Elements: Diaphragms: Connections: EVALUATION DATA BSE-1N Spectral Res Acceler Soil F. BSE- <u>1E</u> Spectral Res Acceler Level of Seis Building F Spectral Accele	Wood shear wall Plywood/Flexible sponse $S_{DS} = -$ actors: Class = - sponse $S_{XS} = -$ actors: $S_{xs} = -$ eration: $S_{a} = 0$	s and moment fra	$S_{D1} = \\ S_{D1} = \\ F_a = \\ S_{X1} = \\ Performance Level:$	1.2 0.491 Imme	F,=1	.5 Incy
Vertical Elements: Diaphragms: Connections: EVALUATION DATA BSE-1N Spectral Res Acceler Soil F. BSE- <u>1E</u> Spectral Res Acceler Level of Seis Building F Spectral Accele Modification	Wood shear wall Plywood/Flexible sponse rations: $S_{DS} = -$ actors: Class = - sponse $S_{XS} = -$ actors: Class = - sponse $S_{XS} = -$ smicity: $-$ period: $T = 0$ eration: $S_a = 0$ Factor: $C_mC_1C_2 =$	s and moment fra	$S_{D1} = \\ F_a = \\ S_{X1} = \\ Performance Level:$	1.2 0.491 Imme	<i>F_v</i> =1 diate Occupa 211 k	.5 INCY
Vertical Elements: Diaphragms: Connections: EVALUATION DATA BSE-1N Spectral Res Acceler Soil F BSE- <u>1E</u> Spectral Res Acceler Level of Seis Building F Spectral Accele Modification I Pseudolateral	Wood shear wall Plywood/Flexible sponse $S_{DS} = -$ factors: Class = - sponse $S_{XS} = -$ stations: $S_{XS} = -$ smicity: H period: $T = 0$ station: $S_a = 0$ Factor: $C_mC_1C_2 = -$ Force: $V = -$	s and moment fra	$S_{D1} = \\ F_a = \\ S_{X1} = \\ Performance Level:$	1.2 0.491 Imme	<i>F_v</i> =1 diate Occupa 211 k	.5 Incy
Vertical Elements: Diaphragms: Connections: EVALUATION DATA BSE-1N Spectral Res Acceler Soil F BSE- <u>1E</u> Spectral Res Acceler Level of Seis Building F Spectral Accele Modification I Pseudolateral BUILDING CLASSIFICATIO	Wood shear wall Plywood/Flexible sponse $S_{DS} = -$ actors: Class = - sponse $S_{XS} = -$ actors: $Class = -$ sponse $S_{xS} = -$ sponse $S_{xS} = -$ actors: $Class = -$ sponse $S_{xS} = -$ actors: $Class = -$ sponse $S_{xS} = -$ actors: $Class = -$ period: $T = 0$ paration: $S_a = 0$ Factor: $C_mC_1C_2S_aW = -$ Proce: $C_mC_1C_2S_aW = -$	s and moment fra	S _{D1} = S _{D1} = F _a = S _{X1} = Performance Level: uilding Weight: W =	1.2 0.491 Imme	F _v =1 diate Occupa 211 k	.5 Incy
Vertical Elements: Diaphragms: Connections: EVALUATION DATA BSE-1N Spectral Res Acceler Soil F BSE- <u>1E</u> Spectral Res Acceler Level of Seis Building f Spectral Accele Modification I Pseudolateral BUILDING CLASSIFICATIO REQUIRED TIER 1 CHECKI	Wood shear wall Plywood/Flexible sponse $S_{DS} = -$ vactors: Class = - sponse $S_{XS} = -$ sactors: Class = - sponse $S_{XS} = -$ semicity: - Period: $T = 0$ oration: $S_a = 0$ Factor: $C_m C_1 C_2 = -$ Force: $V = -$ VN:	s and moment fra	$S_{D1} = \\ S_{D1} = \\ F_a = \\ S_{X1} = \\ Performance Level:$	1.2 0.491 Imme	F _v =1 diate Occupa 211 k	
Vertical Elements: Diaphragms: Connections: EVALUATION DATA BSE-1N Spectral Res Acceler Soil F BSE- <u>1E</u> Spectral Res Acceler Level of Seis Building f Spectral Accele Modification I Pseudolateral BUILDING CLASSIFICATIO REQUIRED TIER 1 CHECKI Basic Configuration Checklist	Wood shear wall Plywood/Flexible sponse $S_{DS} = -$ factors: Class = - sponse $S_{XS} = -$ sactors: Class = - sponse $S_{XS} = -$ smicity: H Period: $T = 0$ paration: $S_a = 0$ Factor: $C_mC_1C_2 = -$ Force: $V = -$ Force: $C_mC_1C_2S_aW = -$ N:	s and moment fra	Sp1 = Sp1 = Fa = Sx1 = Performance Level: uilding Weight: W = 0	1.2 0.491 Imme	F _v =1 diate Occupa 1 k	
Vertical Elements: Diaphragms: Connections: EVALUATION DATA BSE-1N Spectral Res Acceler Soil F BSE- <u>1E</u> Spectral Res Acceler Level of Seis Building F Spectral Accele Modification I Pseudolateral BUILDING CLASSIFICATIO REQUIRED TIER 1 CHECKI Basic Configuration Checklist Building Type <u>W2</u> Structural Ch	Wood shear wall Plywood/Flexible sponse $S_{DS} = -$ actors: Class = - sponse $S_{XS} = -$ actors: Class = - sponse $S_{XS} = -$ amicity: H Period: $T = 0$ paration: $S_a = 0$ Factor: $C_mC_1C_2 = -$ Force: $V = -$ CmC1C_2S_aW = - DN:	s and moment fra	Sme SD1 = Fa = SX1 = Performance Level: uilding Weight: W = 0	1.2 0.491 Imme	F _i =1 diate Occupa 211 k	

Checklist S1 IO also evaluated for moment frame installed in 1998.

Table	17-6	(Continued).	Collapse	Prevention	Structural	Checklist	for	Building	Туре	W2

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
C NC N/A U	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12.2 m) and have aspect ratios less than or equal to 4-to-1.	5.6.2	A.4.2.3
C NC N/A U	OTHER DIAPHRAGMS: The diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing.	5.6.5	A.4.7.1

Note: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown.

Table 17-7. Immediate Occupancy Checklist for Building Type W2

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
Very Low Seis	smicity		
Seismic-Force	e-Resisting System		
	REDUNDANCY: The number of lines of shear walls in each principal direction is greater than or equal to 2.	5.5.1.1	A.3.2.1.1
CNCN/A U	SHEAR STRESS CHECK: The shear stress in the shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than the following values:	5.5.3.1.1	A.3.2.7.1
	Structural panel sheathing1,000 lb/ft (14.6 kN/m)Diagonal sheathing700 lb/ft (10.2 kN/m)Straight sheathing100 lb/ft (1.5 kN/m)All other conditions100 lb/ft (1.5 kN/m)		
	STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system.	5.5.3.6.1	A.3.2.7.2
C NC N/A U	GYPSUM WALLBOARD OR PLASTER SHEAR WALLS: Interior plaster or gypsum wallboard is not used for shear walls on buildings more than one story high with the exception of the uppermost level of a multi-story building.	5.5.3.6.1	A.3.2.7.3
	NARROW WOOD SHEAR WALLS: Narrow wood shear walls with an aspect ratio greater than 2-to-1 are not used to resist seismic forces.	5.5.3.6.1	A.3.2.7.4
C NC N/A U	WALLS CONNECTED THROUGH FLOORS: Shear walls have an interconnection between stories to transfer overturning and shear forces through the floor.	5.5.3.6.2	A.3.2.7.5
	HILLSIDE SITE: For structures that are taller on at least one side by more than one-half story because of a sloping site, all shear walls on the downhill slope have an aspect ratio less than 1-to-2.	5.5.3.6.3	A.3.2.7.6
	CRIPPLE WALLS: Cripple walls below first-floor-level shear walls are braced to the foundation with wood structural panels.	5.5.3.6.4	A.3.2.7.7
	OPENINGS: Walls with openings greater than 80% of the length are braced with wood structural panel shear walls with aspect ratios of not more than 1.5-to-1 or are supported by adjacent construction through positive ties capable of transferring the seismic forces.	5.5.3.6.5	A.3.2.7.8
CONC N/A U	HOLD-DOWN ANCHORS: All shear walls have hold-down anchors attached to the end studs constructed in accordance with acceptable construction practices.	5.5.3.6.6	A.3.2.7.9
	WOOD POSTS: There is a positive connection of wood posts to the foundation	5733	A 5 3 3
	WOOD SILLS: All wood sills are holted to the foundation	5733	Δ534
	GIRDER-COLUMN CONNECTION: There is a positive connection using plates, connection hardware, or straps between the girder and the column support.	5.7.4.1	A.5.4.1

Table 17-7	(Continued).	Immediate	Occupancy	Checklist for	Building	Type	W2
	(•••			

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
Foundation Sy	stem		
	DEEP FOUNDATIONS: Piles and piers are capable of transferring the lateral forces between the structure and the soil.		A.6.2.3
CNCN/A U	SLOPING SITES: The difference in foundation embedment depth from one side of the building to another does not exceed one story high.		A.6.2.4
Low, Moderate Seismicity)	, and High Seismicity (Complete the Following Items in Addition to the Item	s for Very Low	,
Seismic-Force	Resisting System		
	NARROW WOOD SHEAR WALLS: Narrow wood shear walls with an aspect ratio greater than 1.5-to-1 are not used to resist seismic forces.	5.5.3.6.1	A.3.2.7.4
Diaphragms			
CNC N/A U	DIAPHRAGM CONTINUITY: The diaphragms are not composed of split-level floors and do not have expansion joints.	5.6.1.1	A.4.1.1
C NC N/AU	ROOF CHORD CONTINUITY: All chord elements are continuous, regardless of changes in roof elevation.	5.6.1.1	A.4.1.3
C NC N/A U	DIAPHRAGM REINFORCEMENT AT OPENINGS: There is reinforcing around all diaphragm openings larger than 50% of the building width in either major plan dimension.	5.6.1.5	A.4.1.8
	STRAIGHT SHEATHING: All straight-sheathed diaphragms have aspect ratios less than 1-to-1 in the direction being considered.	5.6.2	A.4.2.1
CNC N/A U	SPANS: All wood diaphragms with spans greater than 12 ft (3.6 m) consist of wood structural papels or diagonal sheathing	5.6.2	A.4.2.2
C NC N/AU	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 30 ft (9.2 m) and have aspect ratios less than or equal to 3-to-1.	5.6.2	A.4.2.3
	OTHER DIAPHRAGMS: The diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing.	5.6.5	A.4.7.1
Connections CNC N/A U	WOOD SILL BOLTS: Sill bolts are spaced at 4 ft or less with acceptable edge and end distance provided for wood and concrete.	5.7.3.3	A.5.3.7

Note: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown.

professional to require further investigation shall be categorized as Noncompliant or Unknown. For evaluation statements classified as Noncompliant or Unknown, the design professional is permitted to choose to conduct further investigation using the corresponding Tier 2 evaluation procedure listed next to each evaluation statement.

17.4 STRUCTURAL CHECKLISTS FOR BUILDING TYPES S1: STEEL MOMENT FRAMES WITH STIFF DIAPHRAGMS AND S1A: STEEL MOMENT FRAMES WITH FLEXIBLE DIAPHRAGMS

For building systems and configurations that comply with the S1 or S1a building type description in Table 3-1, the Collapse Prevention Structural Checklist in Table 17-8 shall be completed where required by Table 4-6 for Collapse Prevention Structural Performance, and the Immediate Occupancy Structural Checklist in Table 17-9 shall be completed where required by Table 4-6 for Immediate Occupancy Structural Performance. Tier 1 screening shall include on-site investigation and condition assessment as required by Section 4.2.1.

Where applicable, each of the evaluation statements listed in this checklist shall be marked Compliant (C), Noncompliant (NC), Not Applicable (N/A), or Unknown (U) for a Tier 1 screening. Items that are deemed acceptable to the design professional in accordance with the evaluation statement shall be categorized as Compliant, whereas items that are determined by the design professional to require further investigation shall be categorized as Noncompliant or Unknown. For evaluation statements classified as Noncompliant or Unknown, the design professional is permitted to choose to conduct further investigation using the corresponding Tier 2 evaluation procedure listed next to each evaluation statement.

17.5 STRUCTURAL CHECKLIST FOR BUILDING TYPES S2: STEEL BRACED FRAMES WITH STIFF DIAPHRAGMS AND S2A: STEEL BRACED FRAMES WITH FLEXIBLE DIAPHRAGMS

For building systems and configurations that comply with the S2 or S2a building type description in Table 3-1, the Collapse Prevention Structural Checklist in Table 17-10 shall be completed where required by Table 4-6 for Collapse Prevention Structural Performance, and the Immediate Occupancy Structural Checklist in Table 17-11 shall be completed where required by Table 4-6 for Immediate Occupancy Structural Performance.

Table 17-8. Collapse Prevention Structural Checklist for Building Types S1 and S1a

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
Low Seismici	ty		
Seismic-Force	e-Resisting System	FF11	
	direction is greater than or equal to 2 Three bays	5.5.1.1	A.3.1.1.1
CNCN/A U	DRIFT CHECK: The drift ratio of the steel moment frames, calculated using the	5.5.2.1.2	A.3.1.3.1
\sim	Quick Check procedure of Section 4.4.3.1, is less than 0.030.		
	COLUMN AXIAL STRESS CHECK: The axial stress caused by gravity loads in	5.5.2.1.3	A.3.1.3.2
•	columns subjected to overturning forces is less than $0.10F_y$. Alternatively, the		
	Check procedure of Section 4 4 3 6 is less than 0.30 <i>E</i> .		
C NC N/A U	FLEXURAL STRESS CHECK: The average flexural stress in the moment frame	5.5.2.1.2	A.3.1.3.3
\bigcirc	columns and beams, calculated using the Quick Check procedure of Section		
	4.4.3.9, is less than F_{y} . Columns need not be checked if the strong column–		
Compositions	weak beam checklist item is compliant.		
C NC N/A II	TRANSFER TO STEEL FRAMES: Diaphragms are connected for transfer of	572	A 5 2 2
	seismic forces to the steel frames.	0.7.12	,
C(NC)N/A U	STEEL COLUMNS: The columns in seismic-force-resisting frames are anchored	5.7.3.1	A.5.3.1
	to the building foundation.		
Moderate Seis	smicity (Complete the Following Items in Addition to the Items for Low Seisn a Bogisting System	nicity)	
C NC N/A II	BEDI INDANCY: The number of bays of moment frames in each line is greater	5511	A 3 1 1 1
	than or equal to 2.	0.0.1.1	/
	INTERFERING WALLS: All concrete and masonry infill walls placed in moment	5.5.2.1.1	A.3.1.2.1
\sim	frames are isolated from structural elements.		
	MOMENT-RESISTING CONNECTIONS: All moment connections can develop	5.5.2.2.1	A.3.1.3.4
	the strength of the adjoining members based on the specified minimum yield		
High Seismic	ity (Complete the Following Items in Addition to the Items for Low and Mode	rate Seismicit	V)
Seismic-Force	e-Resisting System		.,
C NC N/A U	MOMENT-RESISTING CONNECTIONS: All moment connections are able to	5.5.2.2.1	A.3.1.3.4
-	develop the strength of the adjoining members or panel zones based on 110%		
	of the expected yield stress of the steel in accordance with AISC 341, Section A3.2		
	PANEL ZONES: All panel zones have the shear capacity to resist the shear	5.5.2.2.2	A.3.1.3.5
	demand required to develop 0.8 times the sum of the flexural strengths of the	0.0.2.2.2	/
\frown	girders framing in at the face of the column.		
	COLUMN SPLICES: All column splice details located in moment-resisting	5.5.2.2.3	A.3.1.3.6
	trames include connection of both flanges and the web.	55015	A 2 1 2 7
	beam joints in each story of each line of moment frames is greater than 50%	5.5.2.1.5	A.3.1.3.7
CNC N/A U	COMPACT MEMBERS: All frame elements meet section requirements in	5.5.2.2.4	A.3.1.3.8
\bigcirc	accordance with AISC 341, Table D1.1, for moderately ductile members.		
Diaphragms (Stiff or Flexible)		
	OPENINGS AT FRAMES: Diaphragm openings immediately adjacent to the	5.6.1.3	A.4.1.5
Flexible Dian	moment trames extend less than 25% of the total frame length.		
CNC N/A U	CROSS TIES: There are continuous cross ties between diaphragm chords.	5.6.1.2	A.4.1.2
C NC N/AU	STRAIGHT SHEATHING: All straight-sheathed diaphragms have aspect ratios	5.6.2	A.4.2.1
\sim	less than 2-to-1 in the direction being considered.		
C NC N/A U	SPANS: All wood diaphragms with spans greater than 24 ft (7.3 m) consist of	5.6.2	A.4.2.2
-	wood structural panels or diagonal sheathing.		

continues

APPENDIX C : TIER 2 EVALUATIONS

OSHPD

Kensington Public Safety Building

217 Arlington Ave, Kensington, CA 94707, USA

Latitude, Longitude: 37.9062238, -122.27874710000003

D'Jour Of Kensington G Google	Kensington Police Department ardens Morfin Financial Services	Amerist Ave	ath #10 S ^s ear Ave Map data ©2019
Date		9/5/2019, 4:01:27 PM	
Design Code Reference Docume	ent	ASCE41-17	
Custom Probability			
Site Class		C - Very Dense Soil and Soft Rock	
Туре	Description		Value
Hazard Level			BSE-2N
SS	spectral response (0.2 s)		2.277
S ₁	spectral response (1.0 s)		0.88
S _{XS}	site-modified spectral response (0.2 s)		2.733
S _{X1}	site-modified spectral response (1.0 s)		1.232
F _a	site amplification factor (0.2 s)		1.2
F _v	site amplification factor (1.0 s)		1.4
ssuh	max direction uniform hazard (0.2 s)		2.886
crs	coefficient of risk (0.2 s)		0.9
ssrt	risk-targeted hazard (0.2 s)		2.598
ssd	deterministic hazard (0.2 s)		2.277
s1uh	max direction uniform hazard (1.0 s)		1.104
cr1	coefficient of risk (1.0 s)		0.891
s1rt	risk-targeted hazard (1.0 s)		0.984
s1d	deterministic hazard (1.0 s)		0.88
T	Description		Malaa
iype Hazard Level	Description		value BSF-1N
Sve	site-modified spectral response (0.2 s)		1 822
-^o S	site medified spectral response (1.2.5)		0.921
⁻ X1	site-mounieu spectral response (1.0 \$)		0.021

Туре	Description	Value
Hazard Level		BSE-2E
SS	spectral response (0.2 s)	1.997
S ₁	spectral response (1.0 s)	0.74
S _{XS}	site-modified spectral response (0.2 s)	2.396
S _{X1}	site-modified spectral response (1.0 s)	1.035
f _a	site amplification factor (0.2 s)	1.2
f _v	site amplification factor (1.0 s)	1.4

Туре	Description	Value
Hazard Level		BSE-1E
SS	spectral response (0.2 s)	0.942
S ₁	spectral response (1.0 s)	0.327
S _{XS}	site-modified spectral response (0.2 s)	1.13
S _{X1}	site-modified spectral response (1.0 s)	0.491
F _a	site amplification factor (0.2 s)	1.2
F _v	site amplification factor (1.0 s)	1.5

Туре	Description	Value
Hazard Level		T-Sub-L Data
T-Sub-L	Long-period transition period in seconds	8

DISCLAIMER

While the information presented on this website is believed to be correct, <u>SEAOC</u> /<u>OSHPD</u> and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

Date:	09/07/2019	Page:	
By:	TR	Job #:	16066
Project:	Kensington Firestation		

ASCE 41 Shear Stress in Shear Walls		
Determine V , the pseudo lateral force from Equation 4-1. V is	s a function of	
 <i>C</i> <i>S_a</i>, the response spectral acceleration at the fundamentla building in the diretion under consideration. <i>S_a</i> shall be c accordance with Section 4.4.2.3 <i>W</i>, the total dead load BSE-1E at Immediate Occupancy 	a period of the alculated in	2
Building type	W1 Wood	Light Frames
the modification factor to relate expected maximum inelastic displacements to displacements calculated for linear elastic response, taken from Table 4-8	C := 1.1	Number of stories=2
Determine <i>S_a</i> 1 second period spectral acceleration of the	$S_{X1} := 0.491$	
BSE-1E		
Short period spectral acceleration of the BSE-1E Design	<i>S_{XS}</i> := .942	
Factor per table 4-8 Determine T	<i>M_s</i> := 1.5	Immediate Occupancy Level of Performance
Coefficient to determine building period, from Section 4.4.2.4	<i>C_t</i> :=0.020	
Height in feet above the base to the roof level	h _n :=22.5 f	t
$\beta := 0.75$ Fundamental period of vibration of the building, calculated in accordance with Section 4.4.2.4	$T := C_t \cdot \left(\frac{h_n}{1 f}\right)$	$\left(\frac{1}{t}\right)^{\beta} = 0.207$

Date:	09/07/2019	Page:	
By:	TR	Job #:	16066
Project:	Kensington Firestation		

inimum base dimension	base:=40.66 ft
$S_{a} \coloneqq min\left(\frac{S_{X1}}{T}, S_{XS}\right) = 0.942$	
$0.6 \cdot S_a = 0.57 \qquad \frac{bas}{h_a}$	<u>e</u> =1.81
Minimum base dimension	
Overturning :	$= \mathbf{if}\left(\frac{base}{h_n} > 0.6 \cdot S_a, \text{"Compliant"}, \text{"Non compliant"}\right)$
Overturning =	="Compliant"
Arrays are second flo	oor and roof
	Floors := 2.0
Floor heights from base	
	$h \coloneqq \begin{bmatrix} 11.75\\22.5 \end{bmatrix} ft$
Length of the wall in	1
North South Direction	$L_{NS_1stFlr} = 105 JL$
	$L_{NS_{2ndFlr}} \coloneqq 51.4 \; ft$
Length of the wall in	
East West Direction	$L_{EW_{1stFlr}} := 84.63 \; ft$
	<i>L_{EW_2ndFlr}</i> ≔ 75.3 <i>ft</i>
For wood-framed walls, the le	ength shall be used rather than wall per 4.4.3.3
Area of walls in north south direction in	$A_{wNS} \coloneqq \left \begin{array}{c} L_{NS_{1} stFlr} \cdot \frac{1}{ft} \\ ft \end{array} \right _{ft^{2}}$

Date:09/07/2019Page:By:TRJob #: 16066Project:Kensington Firestation

H:\2016 JOBS\16066 Kensington Fire Station Assessment\ES 2 UPDATED REPORT\Calc\16066 Kensington Fire Station- ASCE 41 Quick Check and Tier 2 BSE-1E.mcdx

Date:	09/07/2019	Page:	
By:	TR	Job #:	16066
Project:	Kensington Firestation		

SeismicWeight _{2ndFlr} :=FloorArea _{2ndFlr}	• FloorWeight _{2ndFlr} + W _{wall_2ndfFlr}
SeismicWeight _{2ndFlr} =139.24 kip	
SeismicWeight _{Roof} := FloorArea _{Roof} • F	loorWeight _{Roof} +w _{wall_Roof}
SeismicWeight _{Roof} =71.04 kip	
Portion of total seismic	
weight on each floor, the	
first element in the array is	$w := \begin{bmatrix} 140 \end{bmatrix} kin$
Total seismic weight of	$W \leftarrow \sum_{w} w - 211 kip$
structure	
Psuedo seismic force per	$V := C \cdot S_a \cdot W = 219 \ kip$
4.4.2.1 Eq. 4-1	
Factor per 4.4.2.2	$k := \mathbf{if}(T > 2.5, 2, \mathbf{if}(T \le 0.5, 1, 0.5 \cdot T + 0.75))$
	k=1
	$x := 1 \dots Floors$ $j := 1 \dots Floors$
	w - b ^k
Vertical distribution of	$F := \underbrace{\bigvee_{x} \times }_{x} V = \begin{bmatrix} 111 \end{bmatrix} kip$
psuedo seismic force per	$\sum_{k=1}^{k} w \cdot h^{k}$
4.4.2.2 Eq 4-3a	i=1 i i

Date:	09/07/2019	Page:	
By:	TR	Job #:	16066
Proiect:	Kensington Firestation		

			Date: By: Project:	09/07/2019 TR Kensington Fires	Page: Job #: tation	16066
Tier	[.] 2 analysis of shear v	vall				
Tota	al seismic weight of the	e building	W	=211 kip		
C ₁	Modification factor t displacements to dis	o relate expecte placements cal	ed maximur culated for	n inelastic linear elastic resp	oonse	
<i>C</i> ₂	Modification factor t cyclic stiffness degra displacement respon	o represent the idation, and stre nse.	effect of pi ength deter	nched hysteresis ioation on maxin	shape, num	
Ст	Effective mass facto	r to account for	higher moo	lal mass participa	ation effects	
C ₁ C ₂	.:=1.1	Table 7-3				
<i>C_m</i> :=	= 1.0	Table 7-4				
$S_a =$	0.94					
The a bu	Pseudo lateral force in uilding is determined u	n a given horizo Ising Eq. (7-21) :	ntal directio	on of		
	$V := C_1 C_2 \cdot C_m \cdot S_c$	• W				
	V=218.64 kip					
Vert psue 7.4.	ical distribution of edo seismic force per 1.3.2 Eq (7-24)	<i>F</i> _{<i>x</i>} :=-	$\frac{w_{x} \cdot h_{x}^{k}}{\sum_{i=1}^{Floors} w_{i} \cdot h_{i}^{k}}$	$V = \begin{bmatrix} 111\\108 \end{bmatrix} kip$		
Stor	y shear at story level j		$V_{j} := \sum_{x=j}^{Floor}$	$F_{x} = \begin{bmatrix} 219\\108 \end{bmatrix} kip$		

Date:09/07/2019Page:By:TRJob #: 16066Project:Kensington Firestation

H:\2016 JOBS\16066 Kensington Fire Station Assessment\ES 2 UPDATED REPORT\Calc\16066 Kensington Fire Station- ASCE 41 Quick Check and Tier 2 BSE-1E.mcdx

09/07/2019 Date: Page: By: TR lob #: 16066 Project: Kensington Firestation Calculation of available Shear Wall Length Length of shear wall in N-S **Direction in Ground Floor:** $L_{Ground GridA} = 45.75 \ ft + 5.66 \ ft + 5.75 \ ft + 5.5 \ ft = 62.66 \ ft$ Length of shear wall in E-W Direction in Ground Floor : $L_{Ground Grid1} \coloneqq 36.75 ft$ $L_{Ground Grid4} = 12 ft + 8 ft = 20 ft$ $L_{Ground \ Grid7} := 6.83 \ ft + 14 \ ft + 8.5 \ ft = 29.33 \ ft$ Length of shear wall in N-S Direction in Second Floor : $L_{Second GridA} = 7.5 \ ft + 8 \ ft + 5.5 \ ft + 5.75 \ ft + 8.6 \ ft + 10.25 \ ft = 45.6 \ ft$ $L_{second GridE} = 4.9 \ ft + 5.5 \ ft + 5 \ ft + 5.66 \ ft + 5.66 \ ft + 10.25 \ ft = 36.97 \ ft$ Length of shear wall in E-W Direction in Second Floor : $L_{\text{Second Grid1}} \coloneqq 24 \text{ ft}$ $L_{Second Grid4} = 17 ft + 5.66 ft = 22.66 ft$ $L_{\text{Second Grid7}} = 24.25 \text{ ft} + 4.42 \text{ ft} + 8.42 \text{ ft} = 37.09 \text{ ft}$

H:\2016 JOBS\16066 Kensington Fire Station Assessment\ES 2 UPDATED REPORT\Calc\16066 Kensington Fire Station- ASCE 41 Quick Check and Tier 2 BSE-1E.mcdx

		Date: 09/07/2 By: TR Project: Kensing	019 gton Firestation	Page: Job #: 16066
Calculation of Shear Lo	oads to the Shear \	Walls		
Roof				
North South Direc	tion			
<i>V_x</i> :=141 <i>kip</i>	Input Story She	ar		
Shear to Walls along grid A :	$R_{A_Roof} := \frac{V_x}{2} =$ $V_{A_Roof} := \frac{R_{A_}}{L_{Secon}}$	70.5 kip <u>Roof</u> =1546.05 j	plf L _{Second_GridA} =45.	6 ft
Shear to Walls along grid E:	$R_{E_Roof} := \frac{V_x}{2} =$ $V_{E_Roof} := \frac{R_{E_1}}{L_{Second}}$	70.5 <i>kip</i> . <u>.^{.Roof}</u> =1906.95 (nd_GridE	p lf L _{Second_GridE} =36.	97 ft
East West Directio	<u>n</u>			
Shear to Walls along grid 1 :	$R_{1_Roof} \coloneqq \frac{21 \ ft}{79 \ ft} \cdot V$	/ _x =37.48 kip		
	$V_{1_Roof} := \frac{R_{1_Roo}}{L_{Second_G}}$	<u>f</u> =1561.71 plf rrid1		
Shear to Walls along grid 4 :	$R_{4_Roof} \coloneqq \frac{(45 ft + 1)}{2}$	$\frac{-37 ft}{79 ft} \cdot 0.5 \cdot V_x = \frac{1}{79 ft}$	73.18 <i>kip</i>	
	$V_{4_Roof} := \frac{R_{4_Roo}}{L_{second_G}}$	<u>f</u> =3229.36 plf rid4	L _{Second_Grid4} =22.	66 ft

09/07/2019 Date: Page: By: ΤR Job #: 16066 Project: Kensington Firestation Shear to Walls $R_{7_Roof} := \frac{37 \ ft \cdot 0.5}{79 \ ft} \cdot V_x = 33.02 \ kip$ along grid 7: $v_{7_Roof} \coloneqq \frac{R_{7_Roof}}{L_{Second Grid7}} = 890.24 \text{ plf} \quad L_{Second_Grid7} = 37.09 \text{ ft}$ Second Floor North South Direction *V_x* := 286 *kip* **Input Story Shear** $R_{A_2ndFlr} := \frac{V_x}{2} = 143$ kip Shear to Walls along grid A: $V_{A_2ndFloor} := \frac{R_{A_2ndFlr}}{L_{Ground GridA}} = 2282.16 \text{ plf} \qquad L_{Ground_GridA} = 62.66 \text{ ft}$ $R_{E_2ndFlr} := \frac{V_x}{2} = 143$ kip Moment Frame Shear to Walls along grid E: **East West Direction** $R_{1_{2ndFlr}} = \frac{21 \text{ ft}}{79 \text{ ft}} \cdot V_x = 76.03 \text{ kip}$ Shear to Walls along grid 1: $V_{1_2ndFlr} := \frac{R_{1_2ndFlr}}{L_{cound Crid1}} = 2068.72 \ plf$ $R_{4_2ndFlr} := \frac{(45 \ ft + 37 \ ft) \cdot 0.5}{79 \ ft} \cdot V_x = 148.43 \ kip$ Shear to Walls along grid 4 :

H:\2016 JOBS\16066 Kensington Fire Station Assessment\ES 2 UPDATED REPORT\Calc\16066 Kensington Fire Station- ASCE 41 Quick Check and Tier 2 BSE-1E.mcdx

Date:	09/07/2019	Page:	
By:	TR	Job #:	16066
Project:	Kensington Firestation		

Date:	09/07/2019	Page:	
By:	TR	Job #:	16066
Project:	Kensington Firestation		

<u>Existing</u> A	<u>llowable Shear '</u>	<u>Wall Capacity</u>		
Acceptance	Criteria for Defo	ormation Controlled Actions for LSP,Section 7.5.2.2		
<u>m ≔ 1.7</u>	Component n ductility. For l deformation- 12-3.	Component modification factor to account for expected ductility. For linear procedures,m-factors for use with deformation-controlled actions shall be taken from Table 12-3.		
<u>k:=0.9</u>	Knowledge fa per section 6.	actor defined .2.4/Table 6-1		
Q _{CE}	Expected stre 12.4.4.6.2. Ex shall be perm strength shall AWC SDPWS,	ength of wood structural panel sheathing per Section pected strengths of wood structural panel shear walls nitted to based on 1.5 times yield strengths. Yield I be determined using LRFD procedure contained in except the resistance factor, ϕ , shall be taken as 1.0		
North Se	outh Direction			
Shear w along G	all capacity id A	$Q_{CE_AWall} \coloneqq 1.5 \cdot 255 \text{ plf} \cdot 2 \cdot 1 = 765 \text{ plf}$ (10d nails @ 6" oc edge nailing) $m \cdot k \cdot Q_{CE_AWall} = 1170.45 \text{ plf}$ $m \cdot k \cdot Q_{CE_AWall} \cdot L_{Second_GridA} = 53.37 \text{ kip}$ $Q_{ad} \coloneqq R_{A_Roof} = 70.5 \text{ kip}$ $Q_{ad} = 1.32 \text{ NG}$		

Date:	09/07/2019	Page:	
By:	TR	Job #:	16066
Project:	Kensington Firestation		

Shear wall capacity along Grid E	$Q_{CE_AWall} := 1.5 \cdot 255 \ plf \cdot 2 \cdot 1 = 765 \ plf$	
	<i>m•k•Q_{CE_AWall}</i> =1170.45 <i>plf</i>	
	m•k•Q _{CE_AWall} •L _{Second_GridE} =43.27 kip	
	$Q_{ad} \coloneqq R_{E_Roof} = 70.5 \ kip$	
	$\frac{Q_{ad}}{m \cdot k \cdot Q_{CE_AWall} \cdot L_{Second_GridE}} = 1.63$ NG	
East West Direction		
Shear wall capacity along Grid 1	$Q_{CE_AWall} := 1.5 \cdot 255 \ plf \cdot 2 \cdot 1 = 765 \ plf$	
	$m \cdot k \cdot Q_{CE_AWall} = 1170.45 \ plf$	
	m•k•Q _{CE_AWall} •L _{Second_Grid1} =28.09 <i>kip</i>	
	$Q_{ad} := R_{1_{Roof}} = 37.48 \ kip$	
		NG
	$m \cdot k \cdot Q_{CE_AWall} \cdot L_{Second_Grid1}$	
Shear wall capacity	$Q_{CE_AWall} := 1.5 \cdot 255 \ plf \cdot 2 \cdot 1 = 765 \ plf$	Added in 1998
along Grid 4:	$Q_{CE_CWall} := 1.5 \cdot 310 \ plf \cdot 2 \cdot 1 = 930 \ plf$	Added in 2004
m·	$k \cdot (Q_{CEAWall} + Q_{CECWall}) \cdot 17 ft + m \cdot k \cdot Q_{CEAWall}$	•5.66 ft =50.71 k i
Qaa	$R_{4_{Roof}} = 73.18 \text{ kip}$	
	Q _{ad}	

Date:	09/07/2019	Page:	
By:	TR	Job #:	16066
Project:	Kensington Firestation		

along Grid 7:	$\mathbf{Q}_{CE_{AWall}} \coloneqq 1.3 \cdot 233 \ \mathbf{pij} \cdot 2 \cdot 1 \equiv 703 \ \mathbf{pij}$	
	m•k•Q _{CE_AWall} •L _{Second_Grid7} =43.41 kip	
	$Q_{ad} := R_{7_Roof} = 33.02 \ kip$	
	Q_{ad} -0.76	OK
	$m \cdot k \cdot Q_{CE_AWall} \cdot L_{Second_Grid7}$	
Second Floor		
North South Directi	on	
along Grid A	$Q_{ad} \coloneqq R_{A_2ndFlr} = 143$ kip	
	Shear to concrete shear wall	
Shear wall capacity		
along Grid E	$Q_{ad} \coloneqq R_{E_2ndFlr} = 143$ kip	
	Loads to Moment Frame	
East West Direction		
Shear wall capacity along Grid 1	$Q_{CE_AWall} := 1.5 \cdot 255 \ plf \cdot 2 \cdot 1 = 765 \ plf$	
	m•k•Q _{CE_AWall} =1170.45 plf	
	$m \cdot k \cdot Q_{CE_AWall} \cdot L_{Ground_Grid1} = 43.01 \ kip$	
	$Q_{ad} := R_{1_2ndFlr} = 76.03 \ kip$	

Date:	09/07/2019	Page:	
By:	TR	Job #:	16066
Project:	Kensington Firestation		

Date:	09/07/2019	Page:	
By:	TR	Job #:	16066
Project:	Kensington Firestation		

Moment Frames	with Flexible Diaphragms
Section 4.5.3.1 Sto Quick Check Proce	ory Drift for Moment Frames , dure
<i>h</i> ≔ 13.5 <i>ft</i>	Story Height (in)
<i>I_b</i> :=307 <i>in</i> ⁴	Moment of Inertia of beam (in^4)
<i>I_c</i> :=475 <i>in</i> ⁴	Moment of Inertia of beam (in^4)
L:=161 <i>in</i>	Beam Length from center-to-center of adjacent columns (in)
E:=29000 ksi	Modulus of elasticity (kip/in^2)
$V_c \coloneqq \frac{286}{2} kip$ $V_c = 143 kip$	Shear in the column (kip). The column shear forces are calculated using the story forces in accordance with Section 4.5.2.2
$k_b := \frac{I_b}{L}$	for the representative beam
$k_c := \frac{l_c}{h}$	for the representative column
Drift Ratio:	$D_r \coloneqq \frac{\left(k_b + k_c\right)}{k_b \cdot k_c} \cdot \frac{h}{12 \cdot E} \cdot V_c = 0.0576$
if (D _r <0.015,"OK"	,"NG") = "NG"

		By: Project:	TR Kensington Firestation	Job #: 16
Tier 2 evalu	ation of Drift :			
Demands :	Q _{ud col} :=396 kip ⋅ ft	Based on RIS	A 3d analysis	
	<i>Q_{ud_beam}</i> :=396 <i>kip</i> ⋅	of frame ft		
Expected St Beams :	rength of			
Bearing	$M_{CE} := 114 \text{ in}^3 \cdot 3$	36 ksi =4104 kip•in	W12x40 beam wi	th
			5/8"x4.5" wide sti	ff plate
	$Q_{CE_beam} \coloneqq M_{CE} =$	4104 kip•in		
	<i>m</i> :=2.0 T	able 9-4, Beams-Flex	cure, IO	
	$Q_{CE_beam} \bullet m \bullet k = 1$	7387.2 kip•in		
	Oud heam			
	$\frac{\overline{O_{CE hagm} \cdot m \cdot k}}{O_{CE hagm} \cdot m \cdot k} =$	0.64 Non Comp	bliant	
Expected	Strength of			
Columns	Note: Assuming	negligible axial load	d on the columns	
	$M_{CE} = 167 \text{ in}^{\circ} \cdot 3$	36 ksi =6012 kip•in	3/4"x5.5" fla	umns with
	$Q_{CE_col} \coloneqq M_{CE} = 60$)12 <i>kip•in</i>		
	0 - 1752 ki	n.in		
	$Q_{ud_{col}} = 4732$ Ki	p••m		
	<i>m</i> :=2.0 To	able 9-4, Columns-Fl	exure, IO	
	$Q_{ud_col} = 0.4$	Comply		
	$m \cdot Q_{CE_{col}}$			
Conclusion:	of frame was perfor	med in accordance	with Section 5.2.4	
Adequacy o	f the beams and colu	imns was checked r	er Tier 2: Section 5.5.2.1	.2 .
The strengt	n of the beams is not	adequate. The mon	nent frame doesn't com	oly
the drift che	eck.			

Date:09/07/2019Page:By:TRJob #: 16066Project:Kensington Firestation

<i>f_y</i> ≔36 ksi	A36 steel
0.30 f _y =10.8 k	csi
Column Axial stre Overturning calc heck procedure	ess Caused by ulated using quick of Section 4.5.3.6
<i>n_f</i> :=3	Total number of frames in the direction of loading
V:=143 kip	Pseudo Seismic force
<i>h</i> _n ≔13.5 ft	Height above the base to the roof level
L≔39.832 ft	Total length of the frame
<i>M</i> _s :=1.3	System Modification Factor Immediate Occupancy Performace Level
A _{col} :=17 in ²	Area of the end column of the frame
$p_{ot} \coloneqq \frac{1}{M_s} \cdot \left(\frac{2}{3}\right) \cdot$	$\left(\frac{V \cdot h_n}{L \cdot n_f}\right) \cdot \left(\frac{1}{A_{col}}\right) = 0.49 \ ksi$
$p_{ot} < 0.30 f_y$	ok

H:\2016 JOBS\16066 Kensington Fire Station Assessment\ES 2 UPDATED REPORT\Calc\16066 Kensington Fire Station- ASCE 41 Quick Check and Tier 2 BSE-1E.mcdx

Date:	09/07/2019	Page:	
By:	TR	Job #:	16066
Project:	Kensington Firestation		

	Total nume	er of frame co	lumns at the level, j, under con	sideration
n _f := 3	Total numb under cons	er of frames in ideration	n the direction of loading at the	level ,j,
∕ _j ≔143 kip	Story shear	computed in	accordance with Section 4.4.2.2	
n≔13.5 ft	Story Heigh	nt		
Z _c :=4∙167 <i>in</i> ³	³ = 668 <i>in</i> ³	The sum of section mo frame colur under cons	the plastic duli of all the nns at the level ideration	
Z _b ≔6•114 in	³ = 684 <i>in</i> ³	The sum of section mo frame bean resisting co level under	the plastic duli of all the ns with moment nnections at the consideration	
M _s :=3.0		lmmediate System Mo	Occupancy dification Factor	
$\overline{f}_{j_{col}} := V_j \cdot \frac{1}{M_s} \cdot \frac{1}{M_s}$	$\frac{n_c}{n_c - n_f} \cdot \frac{h}{2} \cdot \frac{1}{Z_c} =$	=23.12 ksi	< Fy=36ksi OK	
$i_{j,beam} := V_j \cdot \frac{1}{M_s}$	$\cdot \frac{n_c}{n_c - n_f} \cdot \frac{h}{2} \cdot \frac{1}{Z_k}$	-=22.58 ksi	< Fy=36ksi OK	

Date:	09/07/2019	Page:	
By:	TR	Job #:	16066
Project:	Kensington Firestation		

ANEL ZONES (MODE		Frames
<i>d_c</i> :=12.2 <i>in</i>		Column depth W12x58
<i>d_b</i> :=12 <i>in</i>		Depth of W12x40 beam
<i>t_{fb}</i> ≔0.515 <i>in</i>		Thickness of W12x40 flange beam
E:=29000 ksi		Modulus of elasticity
F _{ye} :=36 ksi		Expected Yield strength of the material, A36 steel
$t_{\rho} := \frac{1}{2} in \cdot 2 + 0.36$	in	Total thickness of panel zone including doubler, 1/2" thk dblr plate both sides
The expected plastic capacity of the pane	shear zone :	
V _{CE} :	$= 0.55 F_{ye} \cdot d_c \cdot t_p$	Equation 9-5
V _{CE} =	=328.52 <i>kip</i>	
<i>m</i> :=	1.5	Column panel zone shear, Immediate Occupancy, Table 9-4,deformation
m•l	≪• <i>V_{CE}</i> =443.5 <i>kip</i>	
The plastic moment capacity of beam:		
Z:=	57 <i>in</i> ³	Plastic section modulus of W12x40 beam
M _{CE}	≔Z•F _{ye} =2052 kip	• in
ΣΜα	$x := 2 \cdot M_{CE} = 4104 k$	ip · in

Date:	09/07/2019	Page:	
By:	TR	Job #:	16066
Project:	Kensington Firestation		

strength of beam :			
<i>t</i> _w :=0.295 <i>in d</i>	:=12 <i>in</i>	<i>t_f</i> ≔0.515 <i>in</i>	$d - 2 \cdot t_f = 10.97$ in
$A_w := t_w \cdot (d - 2 \cdot t_f) =$	3.24 <i>in</i> ²		
$V \coloneqq 0.6 \cdot F_{ye} \cdot A_w = 69$.9 <i>kip</i>	Equation 9-7	
<i>V_{ud}</i> := <i>V</i> =69.9 <i>kip</i>			
Strength of beam web-to column connection welc	o- I :		
<i>V_{CE}</i> ≔1.39	$\left(d-2 t_f\right) = 15$	2.48 kip	
(5/16" fillet weld prov shear plate to column	vided at both n connection	i side of)	
<i>m</i> :=1.0			
m•k•V _{CE} =137.23 kip			
Demand Capacity Ratio			
$\frac{V_{ud}}{m \cdot k \cdot V_{CE}} = 0.51$	OK for mo	derate seismicity	
$1.1 \cdot \frac{V_{ud}}{m \cdot k \cdot V_{CE}} = 0.56$	OK for high	n seismicity	

		Date:	09/07/2019	Page:	4 6 9 6 9
		By: Project:	R Kensington Firestation	Job #:	16066
STRONG COLUMN-WEAK	(BEAM (MODERA	ATE SEISM	ICITY)		
<i>m</i> :=2.5	Tier2: Sectio	on 5.5.2.1.5			
$Z_c = 668 \ in^3$	Plastic section	on modulu	is of		
	Columns				
$Z_b = 684 \ in^3$	Plastic section	on modulu	is of		
	Beams				
$2 \cdot Z_h = 1368 \text{ in}^3$					
n = 0.49 ksi	Avial stress	in the colu	mn		
$p_{ot} = 0.45$ KS	due to overt	turning us	ing		
	quick check	procedure	2		
$f_{a} := p_{at} = 0.49$ ksi					
$\frac{Z_c \cdot (F_{ye} - f_a)}{2} = 0.482$					
2 • Z _b • F _{ye}					
$m \cdot \frac{Z_c \cdot (F_{ye} - f_a)}{2} = 1.2$	>1.0 Compl	ly			
2∙Z _b •F _{ye}					

	Date: By: Project:	09/07/20 TR Kensingt	19 con Firestat	Page: Job #: ion	16066
ASCE 41 Shear Stress in Shear Walls					
Determine <i>V</i> , the pseudo lateral force from Ec	quation 4-	1. <i>V</i> is a	function o	f	
 <i>C</i> <i>S_a</i>, the response spectral acceleration at a building in the diretion under consideration accordance with Section 4.4.2.3 <i>W</i>, the total dead load BSE-2E at Life Safety 	the fundaı on. <i>S_a</i> sha	mentla p ll be calc	eriod of th ulated in	e	
Building type			W1 Wood	Light Frames	
the modification factor to relate experimaximum inelastic displacements to displacements calculated for linear ela response, taken from Table 4-8	cted astic		C≔1.1	Number of stories=2	
Determine S_a	of the		s 1 03 ⁶		
BSE-2E	or the		J _{X1} - 1.052		
Short period spectral acceleration of t Design	the BSE-1E		S _{XS} ≔2.396	5	
Factor per table 4-8			<i>M_s</i> := 3.0	Life Safety Occupancy Le	vel
Determine /				of Performanc	ce
Coefficient to determine building peri from Section 4.4.2.4	od,		<i>C</i> _t :=0.020		
Height in feet above the base to the roof level			h _n :=22.5 j	ft	
$\beta := 0.75$ Fundamental period of vibration of th calculated in accordance with Section	ie building 4.4.2.4	·,	$T := C_t \cdot \left(\frac{h_t}{1}\right)$	$\left(\frac{n}{ft}\right)^{\beta} = 0.207$	

H:\2016 JOBS\16066 Kensington Fire Station Assessment\ES 2 UPDATED REPORT\Calc\16066 Kensington Fire Station- ASCE 41 Quick Check and Tier 2 BSE-2E.mcdx

Date:	09/07/2019	Page:	
By:	TR	Job #:	16066
Project:	Kensington Firestation		

Date:09/07/2019Page:By:TRJob #: 16066Project:Kensington Firestation

H:\2016 JOBS\16066 Kensington Fire Station Assessment\ES 2 UPDATED REPORT\Calc\16066 Kensington Fire Station- ASCE 41 Quick Check and Tier 2 BSE-2E.mcdx

Date:	09/07/2019	Page:	
By:	TR	Job #:	16066
Project:	Kensington Firestation		

Seisinicweigni _{2ndFlr} ·- FiotiAi eu _{2ndFlr}	1001 Werght 2ndFlr + Wwall_2ndfFlr
SeismicWeight _{2ndFlr} =139.24 kip	
SeismicWeight _{Roof} :=FloorArea _{Roof} •Fl	oorWeight _{Roof} +W _{wall_Roof}
SeismicWeight _{Roof} =71.04 kip	
Portion of total seismic	
weight on each floor, the	
for first floor and so on	$w := \begin{bmatrix} 140\\71 \end{bmatrix} kip$
Total soismis woight of	length (w) $W_{-} = \sum w_{-} = 211$ kin
structure	$W := \sum_{i=1}^{N} W_i = 211 \text{ kip}$
Psuedo seismic force per 4.4.2.1 Eq. 4-1	$V := C \cdot S_a \cdot W = 556 \ kip$
Factor per 4.4.2.2	$k \coloneqq if(T > 2.5, 2, if(T \le 0.5, 1, 0.5 \cdot T + 0.75))$
	k=1
	$x := 1 \dots Floors$
	, , , , , , , , , , , , , , , , , , , ,
Vertical distribution of	$F_{x} := \frac{W \cdot h^{k}}{F_{loors}} \cdot V = \begin{bmatrix} 282\\ 274 \end{bmatrix} kip$
osuedo seismic force per 4.4.2.2 Eq 4-3a	$\sum_{i=1} w_i \cdot h_i^k$

Date:	09/07/2019	Page:	
By:	TR	Job #:	16066
Proiect:	Kensington Firestation		

		Date: By: Project:	09/07/2019 TR Kensington Firest	Page: Job #: ation	16066
Tier 2 analysis of sh	ear wall				
Total seismic weight o	of the building	W	=211 <i>kip</i>		
<i>C</i> ₁ Modification fac displacements t	tor to relate expect o displacements ca	ed maximu lculated for	n inelastic linear elastic resp	onse	
C ₂ Modification fac cyclic stiffness o displacement re	tor to represent the legradation, and str sponse.	e effect of pi rength deter	nched hysteresis ioation on maxim	shape, um	
<i>Cm</i> Effective mass f	actor to account for	r higher moo	lal mass participa	tion effects	
$C_1 C_2 := 1.4$	Table 7-3				
<i>C_m</i> := 1.0	Table 7-4				
$S_a = 2.4$					
The Pseudo lateral fo a building is determir	rce in a given horizo ied using Eq. (7-21)	ontal directio :	on of		
$V := C_1 C_2 \cdot C_2$	m•S _a •W				
V=707.78	kip				
Vertical distribution c psuedo seismic force 7.4.1.3.2 Eq (7-24)	f F =	$\frac{w_{x} \cdot h_{x}^{k}}{\sum_{i=1}^{Floors} w_{i} \cdot h_{i}^{k}}$	$V = \begin{bmatrix} 359\\ 349 \end{bmatrix} kip$		
Story shear at story le	evel j	$V_{j} := \sum_{x=j}^{Floor}$	$F_{x} = \begin{bmatrix} 708\\ 349 \end{bmatrix} kip$		

Date:09/07/2019Page:By:TRJob #: 16066Project:Kensington Firestation

H:\2016 JOBS\16066 Kensington Fire Station Assessment\ES 2 UPDATED REPORT\Calc\16066 Kensington Fire Station- ASCE 41 Quick Check and Tier 2 BSE-2E.mcdx

09/07/2019 Date: Page: By: TR lob #: 16066 Project: Kensington Firestation Calculation of available Shear Wall Length Length of shear wall in N-S **Direction in Ground Floor:** $L_{Ground GridA} = 45.75 \ ft + 5.66 \ ft + 5.75 \ ft + 5.5 \ ft = 62.66 \ ft$ Length of shear wall in E-W Direction in Ground Floor : $L_{Ground Grid1} \coloneqq 36.75 ft$ $L_{Ground Grid4} = 12 ft + 8 ft = 20 ft$ $L_{Ground \ Grid7} := 6.83 \ ft + 14 \ ft + 8.5 \ ft = 29.33 \ ft$ Length of shear wall in N-S Direction in Second Floor : $L_{Second GridA} = 7.5 \ ft + 8 \ ft + 5.5 \ ft + 5.75 \ ft + 8.6 \ ft + 10.25 \ ft = 45.6 \ ft$ $L_{second GridE} = 4.9 \ ft + 5.5 \ ft + 5 \ ft + 5.66 \ ft + 5.66 \ ft + 10.25 \ ft = 36.97 \ ft$ Length of shear wall in E-W Direction in Second Floor : $L_{\text{Second Grid1}} \coloneqq 24 \text{ ft}$ $L_{Second Grid4} = 17 ft + 5.66 ft = 22.66 ft$ $L_{\text{Second Grid7}} = 24.25 \text{ ft} + 4.42 \text{ ft} + 8.42 \text{ ft} = 37.09 \text{ ft}$

H:\2016 JOBS\16066 Kensington Fire Station Assessment\ES 2 UPDATED REPORT\Calc\16066 Kensington Fire Station- ASCE 41 Quick Check and Tier 2 BSE-2E.mcdx

		By: TR Project: Ker	sington Firestation	Job #:
lculation of Shear Lo	ads to the Shear	Walls		
Roof				
North South Direct	ion			
<i>V_x</i> ≔141 <i>kip</i>	Input Story She	ar		
Shear to Walls along grid A :	$R_{A_Roof} := \frac{V_x}{2} =$	70.5 <i>kip</i>		
	$V_{A_Roof} := \frac{R_A}{L_{Seco}}$	_ <u>Roof</u> =1546. nd_GridA	05 plf L _{Second_GridA} =	45.6 ft
Shear to Walls along grid E:	$R_{E_Roof} := \frac{V_x}{2} =$	70.5 <i>kip</i>		
	$V_{E_Roof} := \frac{R_E}{L_{Secon}}$	<u>_Roof</u> = 1906.9 nd_GridE	95 plf L _{Second_GridE} =	36.97 ft
East West Direction	1			
Shear to Walls along grid 1 :	$R_{1_Roof} \coloneqq \frac{21 \ ft}{79 \ ft}.$	V _x =37.48 kip		
	$v_{1_Roof} := \frac{R_{1_Roof}}{L_{Second_C}}$	<u>)f</u> =1561.71 Grid1	plf	
Shear to Walls along grid 4 :	R _{4_Roof} := (45 ft -	+ 37 ft)•0.5 79 ft	′ _x =73.18 kip	
	$V_{4_Roof} := \frac{R_{4_Roo}}{L_{Second_C}}$	o <u>f</u> = 3229.36 Grid4	plf L _{Second_Grid4} =	22.66 ft

09/07/2019 Date: Page: By: ΤR Job #: 16066 Project: Kensington Firestation Shear to Walls $R_{7_Roof} := \frac{37 \ ft \cdot 0.5}{79 \ ft} \cdot V_x = 33.02 \ kip$ along grid 7: $v_{7_Roof} \coloneqq \frac{R_{7_Roof}}{L_{Second Grid7}} = 890.24 \text{ plf} \quad L_{Second_Grid7} = 37.09 \text{ ft}$ Second Floor North South Direction *V_x* := 286 *kip* **Input Story Shear** $R_{A_2ndFlr} := \frac{V_x}{2} = 143$ kip Shear to Walls along grid A: $V_{A_2ndFloor} := \frac{R_{A_2ndFlr}}{L_{Ground GridA}} = 2282.16 \text{ plf} \qquad L_{Ground_GridA} = 62.66 \text{ ft}$ $R_{E_2ndFlr} := \frac{V_x}{2} = 143$ kip Moment Frame Shear to Walls along grid E: **East West Direction** $R_{1_{2ndFlr}} = \frac{21 \text{ ft}}{79 \text{ ft}} \cdot V_x = 76.03 \text{ kip}$ Shear to Walls along grid 1: $V_{1_2ndFlr} := \frac{R_{1_2ndFlr}}{L_{cound Crid1}} = 2068.72 \ plf$ $R_{4_2ndFlr} := \frac{(45 \ ft + 37 \ ft) \cdot 0.5}{79 \ ft} \cdot V_x = 148.43 \ kip$ Shear to Walls along grid 4 :

H:\2016 JOBS\16066 Kensington Fire Station Assessment\ES 2 UPDATED REPORT\Calc\16066 Kensington Fire Station- ASCE 41 Quick Check and Tier 2 BSE-2E.mcdx

Date:	09/07/2019	Page:	
By:	TR	Job #:	16066
Project:	Kensington Firestation		

Date:	09/07/2019	Page:	
By:	TR	Job #:	16066
Project:	Kensington Firestation		

Acceptance	e Criteria for Defor	mation Controlled Actions for LSP,Section 7.5.2.2	
<u>m ≔ 3.8</u>	Component modification factor to account for expected ductility. For linear procedures,m-factors for use with deformation-controlled actions shall be taken from Table 12-3.		
<u>k≔0.9</u>	Knowledge fact per section 6.2	tor defined .4/Table 6-1	
Q _{CE}	Expected stren 12.4.4.6.2. Expe shall be permit strength shall b AWC SDPWS, e	gth of wood structural panel sheathing per Section ected strengths of wood structural panel shear walls ted to based on 1.5 times yield strengths. Yield be determined using LRFD procedure contained in except the resistance factor, ϕ , shall be taken as 1.0	
<u>Roof</u>			
<u>North S</u>	outh Direction		
Shear w along G	all capacity rid A	$Q_{CE_AWall} \coloneqq 1.5 \cdot 255 \ plf \cdot 2 \cdot 1 = 765 \ plf$ (10d nails @ 6" oc edge nailing) $m \cdot k \cdot Q_{CE_AWall} = 2616.3 \ plf$ $m \cdot k \cdot Q_{CE_AWall} \cdot L_{Second_GridA} = 119.3 \ kip$ $Q_{ad} \coloneqq R_{A_Roof} = 70.5 \ kip$ $\frac{Q_{ad}}{m \cdot k \cdot Q_{CE_AWall} \cdot L_{Second_GridA}} = 0.59 \ \text{NG}$	

Date:	09/07/2019	Page:	
By:	TR	Job #:	16066
Project:	Kensington Firestation		

Date:	09/07/2019	Page:	
By:	TR	Job #:	16066
Project:	Kensington Firestation		

long Grid 7:		
Ŭ	m•k•Q _{CE_AWall} •L _{Second_Grid7} =97.04 kip	
	$Q_{ad} := R_{7_{Roof}} = 33.02 \ kip$	
	$Q_{ad} = 0.34$	OK
	$m \cdot k \cdot Q_{CE_AWall} \cdot L_{Second_Grid7}$	
Second Floor		
North South Directio	<u>1</u>	
Shear wall capacity along Grid A	$Q_{ad} := R_{A_2ndFlr} = 143$ kip	
	Shear to concrete shear wall	
Shear wall capacity along Grid E		
	$Q_{ad} \coloneqq R_{E_{2ndFlr}} = 143 \text{ kip}$	
	Loads to Moment Frame	
East West Direction		
Shear wall capacity	$Q_{cr} = 15.255 \text{ plf} \cdot 2.1 = 765 \text{ plf}$	
along Grid 1		
	m•k•Q _{CE_AWall} =2616.3 plf	
	$m \cdot k \cdot Q_{CE_AWall} \cdot L_{Ground_Grid1} = 96.15 $ <i>kip</i>	
	$Q_{ad} := R_{1_2 ndFlr} = 76.03 \ kip$	

Date:	09/07/2019	Page:	
By:	TR	Job #:	16066
Project:	Kensington Firestation		

Date:	09/07/2019	Page:	
By:	TR	Job #:	16066
Project:	Kensington Firestation		

Section 1 1 2 1 Str	ry Drift for Moment Frames
Quick Check Proce	dure
<i>h</i> ≔13.5 ft	Story Height (in)
<i>I_b</i> :=307 <i>in</i> ⁴	Moment of Inertia of beam (in^4)
<i>I_c</i> ≔475 <i>in</i> ⁴	Moment of Inertia of beam (in^4)
L≔161 <i>in</i>	Beam Length from center-to-center of adjacent columns (in)
E:=29000 ksi	Modulus of elasticity (kip/in^2)
$V_c \coloneqq \frac{286}{2} kip$	Shear in the column (kip). The column shear forces are calculated using the story forces in accordance with
$V_c = 143 \text{ km}$	for the representative beam
$\kappa_b := \frac{L}{L}$	
$k_c := \frac{l_c}{h}$	for the representative column
Drift Ratio:	$D_r \coloneqq \frac{(k_b + k_c)}{h} \cdot \frac{h}{h} \cdot V_c = 0.0576$
	$k_b \cdot k_c$ 12 · E
f (<i>D_r</i> <0.015,"OK"	,"NG") = "NG"

		By: Project:	TR Kensington Firestation	Job #: 16
Tier 2 evalua	ation of Drift :			
Demands :	$Q_{ud_col} \coloneqq 396 \ kip \cdot ft$	Based on RISA	A 3d analysis	
	Q _{ud_beam} ≔396 kip∙ft	ormanic		
Expected Sti Beams :	rength of			
bearing .	<i>M_{CE}</i> :=114 <i>in</i> ³ ⋅ 36 <i>k</i>	rsi =4104 kip∙in	W12x40 beam wi 5/8"x4.5" wide sti	th ff plate
	$Q_{CE_beam} \coloneqq M_{CE} = 410$	4 kip•in		
	<i>m</i> ≔2.0 Table	e 9-4, Beams-Flexi	ure, IO	
	$Q_{CE_beam} \cdot m \cdot k = 738$	7.2 kip•in		
	$\frac{Q_{ud_beam}}{Q_{CE_beam} \cdot m \cdot k} = 0.6$	4 Non Comp	liant	
Expected	Strength of			
Columns	Note: Assuming ne	gligible axial load	on the columns	
	<i>M_{CE}</i> :=167 <i>in</i> ³ ⋅ 36 <i>k</i>	rsi =6012 kip∙in	W12x58 col 3/4"x5.5" fla	umns with
	$Q_{CE_col} \coloneqq M_{CE} = 6012$	kip∙in		
	Q _{ud_col} =4752 kip •ii	n		
	<i>m</i> ≔6.0 Table	e 9-6, Columns-Fle	exure, IO	
	$\frac{Q_{ud_col}}{m=0} = 0.13$	Comply		
Conclusion	III • Q _{CE_col}			
The anlaysis	of frame was performe	d in accordance v	vith Section 5.2.4	
Adequacy of	f the beams and column	s was checked p	er Tier 2: Section 5.5.2.1	.2 .
The strength	n of the beams is not ad	equate. The mom	ent frame doesn't com	oly
he drift che	ck.	equate. me mom		.,y

Date:09/07/2019Page:By:TRJob #: 16066Project:Kensington Firestation

<i>f_y</i> ≔36 ksi	A36 steel
0.30 f _y =10.8 k	csi
Column Axial stre Overturning calc heck procedure	ess Caused by ulated using quick of Section 4.5.3.6
<i>n_f</i> :=3	Total number of frames in the direction of loading
V:=143 kip	Pseudo Seismic force
<i>h</i> _n ≔13.5 ft	Height above the base to the roof level
L≔39.832 ft	Total length of the frame
<i>M</i> _s :=1.3	System Modification Factor Immediate Occupancy Performace Level
A _{col} :=17 in ²	Area of the end column of the frame
$p_{ot} \coloneqq \frac{1}{M_s} \cdot \left(\frac{2}{3}\right) \cdot$	$\left(\frac{V \cdot h_n}{L \cdot n_f}\right) \cdot \left(\frac{1}{A_{col}}\right) = 0.49 \ ksi$
$p_{ot} < 0.30 f_y$	ok

Date:	09/07/2019	Page:	
By:	TR	Job #:	16066
Project:	Kensington Firestation		

$n_c := 4$	Total numb	Total number of frame columns at the level, j, under consideration		
n _f :=3	Total number of frames in the direction of loading at the level ,j, under consideration			
V _j ≔143 kip	Story shear	ry shear computed in accordance with Section 4.5.2.2		
h≔13.5 ft	Story Heigh	it		
Z _c ≔4•167 <i>in</i> ³	=668 <i>in</i> ³	The sum of section mo frame colur under cons	the plastic duli of all the nns at the level deration	
Z _b ≔6•114 in ³	=684 <i>in</i> ³	The sum of the plastic section moduli of all the frame beams with moment resisting connections at the level under consideration		
<i>M_s</i> := 3.0		Immediate Occupancy System Modification Factor		
$f_{j_col} := V_j \cdot \frac{1}{M_s} \cdot \frac{1}{r}$	$\frac{n_c}{n_c - n_f} \cdot \frac{h}{2} \cdot \frac{1}{Z_c} =$	23.12 ksi	< Fy=36ksi OK	
$f_{j_beam} \coloneqq V_j \cdot \frac{1}{M_s}$	$\frac{n_c}{n_c - n_f} \cdot \frac{h}{2} \cdot \frac{1}{Z_k}$	-=22.58 ksi	< Fy=36ksi OK	

Date:	09/07/2019	Page:	
By:	TR	Job #:	16066
Project:	Kensington Firestation		

ANEL ZOINES (MODE		Frames
<i>d</i> _c ≔12.2 <i>in</i>		Column depth W12x58
<i>d</i> _b ≔12 <i>in</i>		Depth of W12x40 beam
<i>t_{fb}</i> ≔ 0.515 <i>in</i>		Thickness of W12x40 flange beam
E≔29000 ksi		Modulus of elasticity
<i>F_{ye}</i> := 36 <i>ksi</i>		Expected Yield strength of the material, A36 steel
$t_p := \frac{1}{2} i n \cdot 2 + 0.3$	6 in	Total thickness of panel zone including doubler, 1/2" thk dblr plate both sides
The expected plasti capacity of the pan	c shear el zone :	
V _{CL}	$= 0.55 F_{ye} \cdot d_c \cdot t_p$	Equation 9-5
V _{CL}	=328.52 <i>kip</i>	
m	= 1.5	Column panel zone shear, Immediate Occupancy, Table 9-4,deformation
m	• <i>k•V_{CE}</i> =443.5 <i>kip</i>	
The plastic momen capacity of beam:	t	
Z:=	= 57 <i>in</i> ³	Plastic section modulus of W12x40 beam
Mc	_E :=Z∙F _{ye} =2052 kip	• in
ΣΝ	$M_{CE} := 2 \cdot M_{CE} = 4104 \ k$	ip · in

Date:	09/07/2019	Page:	
By:	TR	Job #:	16066
Project:	Kensington Firestation		

strength of beam :			
<i>t</i> _w :=0.295 <i>in d</i>	:=12 <i>in</i>	<i>t_f</i> ≔0.515 <i>in</i>	$d - 2 \cdot t_f = 10.97$ in
$A_w := t_w \cdot (d - 2 \cdot t_f) =$	3.24 <i>in</i> ²		
$V \coloneqq 0.6 \cdot F_{ye} \cdot A_w = 69$.9 <i>kip</i>	Equation 9-7	
<i>V_{ud}</i> := <i>V</i> =69.9 <i>kip</i>			
Strength of beam web-to column connection welc	o- I :		
<i>V_{CE}</i> ≔1.39	$\left(d-2 t_f\right) = 15$	2.48 kip	
(5/16" fillet weld prov shear plate to column	vided at both n connection	i side of)	
<i>m</i> :=1.0			
m•k•V _{CE} =137.23 kip			
Demand Capacity Ratio			
$\frac{V_{ud}}{m \cdot k \cdot V_{CE}} = 0.51$	OK for mo	derate seismicity	
$1.1 \cdot \frac{V_{ud}}{m \cdot k \cdot V_{CE}} = 0.56$	OK for high	n seismicity	

		Date: 09/07/2019 By: TR Project: Kensington Firesta	Page: Job #: 16066 ation
STRONG COLUMN-WEAK	BEAM (MODERAT	re seismicity)	
<i>m</i> :=2.5	Tier2: Section	n 5.5.2.1.5	
$Z_c = 668 \ in^3$	Plastic section Columns	n modulus of	
$Z_b = 684 \ in^3$	Plastic section Beams	n modulus of	
$2 \cdot Z_b = 1368 \ in^3$			
p _{ot} =0.49 ksi	Axial stress ir due to overtu quick check p	n the column urning using procedure	
$f_a := p_{ot} = 0.49$ ksi			
$\frac{Z_c \cdot (F_{ye} - f_a)}{2 \cdot Z_b \cdot F_{ye}} = 0.482$			
$m \cdot \frac{Z_c \cdot (F_{ye} - f_a)}{2 \cdot Z_b \cdot F_{ye}} = 1.2$	>1.0 Comply		